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Normal Modes of Vibration in Nickel 
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The frequency-wave-vector dispersion relation, v(q), for the normal vibrations of a nickel single crystal 
at 296°K has been measured for the [OOf], [Oft*], [$?$*], and [0£*1] symmetric directions using inelastic 
neutron scattering. The results can be described in terms of the Born-von Karman theory of lattice dy­
namics with interactions out to fourth-nearest neighbors. The shapes of the dispersion curves are very 
similar to those of copper, the normal mode frequencies in nickel being about 1.24 times the corresponding 
frequencies in copper. The fourth-neighbor model was used to calculate the frequency distribution function 
g(v) and related thermodynamic properties. 

INTRODUCTION 

MANY properties of the ferromagnetic transition 
metal, nickel, have been studied both experi­

mentally and theoretically over the past several years. 
The electronic band structure and Fermi surface of 
nickel are believed to be similar in certain respects to 
those of copper1,2 whereas the incomplete d-electron 
shell and ferromagnetic properties of nickel demon­
strate its similarity to iron and cobalt.3 The simple 
structure (face-centered cubic) and favorable nuclear 
parameters of nickel make possible, in principle, a 
study of several of its properties by means of the now 
well-known4 techniques of thermal neutron inelastic 
scattering. Some measurements have already been 
made5 of the frequency-wave-vector dispersion relation 
for long-wavelength spin waves in nickel. The technique 
of small-angle scattering6 has also been employed7 to 
observe the parabolic form of this dispersion relation. 
From both types of experiment, values of the nearest-
neighbor exchange parameter J have been deduced, 
which are in good agreement with those obtained from 
spin-wave resonance8 experiments and from measure­
ments of the saturation magnetization9 as a function of 
temperature. A study has been made10 of the critical 
neutron scattering near the Curie temperature (630°K), 
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A 

and of the frequency distribution function for the 
normal modes of vibration g(v)}l~n 

This paper is concerned firstly with the determination 
of the frequency-wave-vector dispersion relation Vj(q) 
(j is the polarization index) for the normal modes of 
vibration in a single crystal of unmagnetized nickel at 
296°K, by means of coherent inelastic neutron scat­
tering,14 and secondly with the correlation of these 
results with measurements of other properties of nickel. 

In the experiments, coherent one-phonon scattering 
processes occur in which the energy and momentum of 
the neutrons are changed from their initial values, E0 

and &k0 to final values E' and ftkf governed by the 
conservation conditions: 

E0-E' = ±hv, 

k 0 -k / =Q=2f l -T+q , 

(1) 

(2) 

where Q is the momentum transfer vector, q the reduced 
wave vector of the phonon involved in the scattering 
process, and T a vector of the reciprocal lattice. The 
+ (—) sign refers to phonon creation (annihilation). 
Peaks are obtained when the frequency v given by 
Eq. (1) coincides with that of the phonon whose wave 
vector is q, given by the dispersion relation 

v=vj(q). (3) 

This process is repeated for successive values of q 
along high-symmetry directions in the crystal. Such 
measurements provide direct information concerning 
the interatomic forces. 

Attempts have been made15'16 to calculate the inter­
atomic forces in certain metals (e.g., Na, Cu, Zn) from 
first principles, and to justify17 the use of an "effective 
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interatomic potential" to describe these forces. It is 
hoped that the results contained in this paper will 
stimulate the further theoretical work required to 
extend such calculations to the case of transition metals. 

When a suitable interatomic force model has been 
constructed from the observed vj(q), the frequency 
distribution function g(v) for the normal modes may be 
computed, together with the moments Mn of this 
function: 

/»oo . /»oo 

Mn= vng(v)dv/I g{v)dv. (4) 

These moments may be obtained from a detailed 
analysis of precise thermodynamic data, such as has 
been carried out for the alkali halides.18 This process is, 
however, more complicated in the case of nickel, since 
the observed total heat capacity contains contributions 
from the conduction electrons and from spin waves, in 
addition to the usual lattice term. 

Nickel is one of the few materials for which a com­
parison is possible between the g(v) obtained directly11 

from incoherent neutron scattering experiments and 
that computed from the normal mode dispersion rela­
tion via an interatomic force model. A third possible 
method of determining g(v), by means of neutron 
scattering from a single crystal specimen of natural 
isotopic composition, and correcting for the coherent 
scattering effects, has been attempted12 with some 
success. Analysis of inelastic neutron scattering from 
polycrystalline nickel (also of natural isotopic com­
position) with the help of an "incoherent approxi­
mation" has been carried out13 to obtain a function 
which is believed to resemble the frequency distribution 
function of nickel in important respects. A fifth method 
of obtaining information about g(v), recently suggested 
by Guttman19 and involving the use of polarized neutron 
beams, cannot be used in the case of nickel since its 
incoherent scattering does not arise from nuclear spin 
disorder. 

Similar measurements of vj(q) for nickel by Hautcler20 

have been made independently of those reported in this 
paper. No detailed comparison of these results has yet 
been made. 

MEASUREMENTS AND RESULTS 

The present experiments were performed by means 
of the triple axis crystal spectrometer4 at the NRU 
reactor, Chalk River. A collimated beam of mono­
chromatic neutrons, produced by Bragg reflection from 
an aluminum single crystal, is incident upon the nickel 
specimen. The energies of the scattered neutrons are 
determined by Bragg reflection from a second aluminum 
single crystal. Most of the experiments consisted in 

18 T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. 
Soc. (London) A242, 478 (1957). 

19 L. Guttman, Nucl. Instr. Methods 25, 188 (1963). 
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FIG. 1. Neutron groups for typical phonons in nickel and their 
corresponding positions in the reciprocal lattice (1 THz=1012 

cps). 

observing the scattered neutron counting rate for fixed 
values of Q and E\ while the incident energy, 
EQ(E0>E') is varied.4 Measurements were carried out 
for waves propagating along the high symmetry 
directions [00f], [Off], [fff], and [Of 1]. 

The single crystal nickel specimen (purity^ 99.97%) 
was in the form of a f-in.Xf-in. cylinder, purchased 
from the Virginia Institute for Scientific Research. 
Measurements were made at 296°K with the crystal 
in either of two different orientations (i) with a (110)-
type mirror plane parallel to k0 and k', or (ii) with a 
(lOO)-type mirror plane parallel to k0 and k'. Certain 
branches of Vj(q), such as the longitudinal (L) and 
transverse (T) branches in the [OOf ] direction may be 
studied in both crystal orientations; this serves as a 
useful consistency check on the results, as do obser­
vations of the same phonon for different Q and for 
different Ef. The experimental arrangement is such that 
the instrumental resolution is generally speaking higher 
for low Er. In the experiments at low E;, care was 
taken to avoid the possibility of spurious neutron groups 
arising from the second-order reflecting power of the 
analyzing crystal, thus: 

E0-4E'=±hvf, 

k0-2k'=Q'=27rT+q', (5) 

where /=*v(q')- Other types of spurious processes can 
also occur, though these are usually more readily 
avoided. 

Four typical neutron groups are shown in Fig. 1; 
groups A and B were observed under conditions of 
higher resolution than C and D, as is suggested by 
their relative frequency widths. The upper reciprocal 
lattice diagram in Fig. 1 contains a graphical repre­
sentation of Eq. (2) and illustrates the method of 
"constant Q."4 The neutron group A was obtained by 
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observing the scattered neutron count rate for a 
sequence of spectrometer positions, the first and last 
of which are indicated by means of the appropriate 
neutron wave vectors. The complete results are shown 
in Fig. 2 and Table I. The phonon frequencies were 

TABLE I. Normal mode frequencies in nickel at 
296°K (units THz^lO12 cps). 

[oor]£ [oor]r zmlL 
r 0.1 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.85 
0.9 
0.95 
1.0 

V 

1.71±0.10 
3.12±0.09 
4.42=4=0.11 
5.58±0.12 
6.54±0.13 
7.34±0.12 
7.94±0.14 
8.34±0.13 
8.50=1=0.24 
8.56±0.18 
8.65=1=0.20 
8.55±0.13 

C 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 
1.0 

V 

2.03=1=0.04 
2.99±0.06 
3.83±0.06 
4.49=1=0.08 
5.12=1=0.09 
5.67±0.11 
5.83=b0.12 
6.01=1=0.12 
6.07±0.12 
6.23=1=0.13 
6.24db0.14 
6.27±0.10 

r 0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.425 
0.45 
0.475 
0.5 

V 

3.05±0.05 
4.39±0.07 
5.60±0.09 
6.61=fc0.10 
7.44±0.14 
8.14=fc0.16 
8.53=1=0.17 
8.61±0.24 
8.79=1=0.18 
8.58=1=0.25 
8.88±0.17 

ttffir corr]^ [Off]!-,* 
f 

0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.375 
0.4 
0.425 
0.45 
0.475 
0.5 

V 

1.33=fc0.04 
1.89=1=0.05 
2.47±0.05 
2.99=fc0.05 
3.37=1=0.05 
3.76±0.05 
3.90±0.07 
4.02=1=0.06 
4.10=1=0.08 
4.26=1=0.06 
4.24=1=0.08 
4.24=1=0.06 

r 0.1 
0.2 
0.3 
0.4 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

V 

2.34=1=0.09 
4.44=1=0.11 
6.08±0.10 
7.25=1=0.17 
7.63=1=0.20 
7.69=1=0.27 
7.68=1=0.18 
7.47=1=0.19 
7.39=1=0.17 
7.30=1=0.24 
6.85=1=0.17 
6.74=k0.25 
6.54=fc0.l7 
6.36=1=0.15 

r 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.65 
0.7 
0.75 
0.8 
0.9 

V 

1.28=b0.05 
2.76=1=0.10 
4.14=1=0.14 
5.50=1=0.18 
6.15±0.12 
6.85=1=0.20 
7.22=1=0.18 
7.67=b0.15 
7.93=1=0.23 
8.13±0.14 
8.52±0.17 

[orr]^ia [ori]A [on]n 
r 0.2 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

V 

1.96±0.05 
2.81=1=0.08 
3.62=1=0.09 
4.36=1=0.08 
4.98=1=0.10 
5.59=1=0.12 
5.97=1=0.13 
6.26=1=0.15 

f 
0.5 
0.6 
0.7 
0.8 
0.9 

V 

6.21=1:0.15 
6.20=1=0.12 
6.40=1=0.14 
6.36=1=0.15 
6.32=1=0.16 

r 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

V 

8.52=1=0.20 
8.39=1=0.15 
8.16=b0.16 
7.83=1=0.14 
7.49=1=0.14 
7.11=1=0.13 
6.80=1=0.12 
6.47=1=0.12 
6.40=b0.11 

a The polarization vectors for t h e T i and T2 modes propagating along 
the [Off] direction are parallel to [Off] and [f00], respectively. 

determined with a precision of about 2%. They have 
been corrected for the effect of the variation of the 
neutron scattering cross section across the instrumental 
energy resolution. The solid lines drawn through the 
origin (q=0) in various sections of Fig. 2 represent the 
appropriate sound velocities calculated from the elastic 
constants of unmagnetized nickel.21 The apparent dis­
crepancies between these lines and the phonon fre­
quencies measured at small wave vectors for the 
L[00f] and T2[0ff] branches are probably within 

21 J. de Klerk, Proc. Phys. Soc. (London) 73, 337 (1959). 
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FIG. 2. The measured dispersion curves for nickel at 296°K 
compared with the best-fit fourth-neighbor Born-von K arm an 
model. The straight lines through the origins have the slopes of 
the appropriate velocities of sound as calculated from the measured 
elastic constants. 

experimental error. (The polarization vectors of the 
normal modes belonging to the r2[pff] branch are 
parallel to [f00].) More precise measurements would be 
needed to establish the significance of these discrepan­
cies. The dispersion curves are generally rather smooth 
and do not display anomalies of the type observed, for 
example, in the case of lead.22 

In the present experiments, no observations were 
made of neutron groups arising from "one-magnon" 
scattering processes (i.e., involving one quantum of 
spin-wave energy). It is easy to avoid any confusion 
between phonon and magnon processes owing to the 
large energy difference between them for most wave 
vectors. Figure 3 shows a sketch of the magnon dis­
persion relation (as a function of the square of the 
wave vector) expected from simple spin-wave theories 
of ferromagnetism23'5,7; the upper shaded area is a rough 
indication of the uncertainty of the dashed curve. 
Although such theories are adequate for perhaps only 
the region of small wave vectors, it seems very unlikely 
that the actual magnon energies for large wave vectors 
are within the "phonon" energy region, represented by 
the lower shaded portion. For small wave vectors, in 
this method of presentation, the magnon dispersion 
relation is a linear function with a very small or zero 
intercept at q2=0. The phonon dispersion curves, on 
the other hand, appear parabolic near the origin, and 
will thus intersect the magnon curve. These inter­
sections will occur for aq/2w<0.l in all cases. [The 
reverse situation, in which the magnon curves are being 

22 B. N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and 
A. D. B. Woods, Phys. Rev. 128, 1099 (1962). 

23 J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. 
30, 1 (1958). 
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FIG. 3. Comparison of phonon and magnon energies for nickel. 

studied, and the phonons avoided, would be much less 
favorable; it would be necessary to distinguish, by 
means of the response of the neutron intensity to an 
applied magnetic field, the true magnon peaks from 
various one-phonon processes (for which the cross 
section would usually be much higher) observed by 
reason of the higher order reflections from the mono-
chromator and analyzer crystals of the spectrometer. 
A study of the phonon dispersion relation is thus a 
valuable preliminary for the more difficult deter­
mination of the spin-wave dispersion relation.] 

ANALYSIS OF RESULTS 

The application of the Born-von Karman theory24 

to fee lattices has been described by many authors. 
The squares of the normal mode frequencies are eigen­
values of a 3X3 matrix D whose elements have been 
expressed in a concise form by Squires.25 For normal 
modes propagating in the high-symmetry directions 
(see Fig. 2), D factorizes into three linear equations. 
The dispersion curves can then be Fourier analyzed26 

to yield information concerning the forces between 
various planes of atoms in the crystal. This kind of 
analysis is described in detail in Ref. 22 for the case of 
lead. As might be expected from the smooth shapes of 
the dispersion curves for nickel, Fourier analysis shows 
that relatively short range interatomic forces (at least 
up to third-nearest neighbors, but not necessarily 
beyond fifth) provide a satisfactory description of the 
experimental results. This is confirmed by a linear 
least-squares fit analysis of all the data of Table I 
together with the known elastic constants,21 on the 
basis of the Born-von Karman theory. An excellent 
fit was obtained either with general interatomic forces 
out to fourth-nearest neighbors, or with an axially 

symmetric model27 extending to fifth-nearest neighbors. 
The dispersion curves are indeed sufficiently simple 
that a fairly satisfactory fit can be obtained with a 
third-neighbor force model having only 9 disposable 
parameters. The dispersion curves calculated on the 
basis of the general fourth-neighbor model are shown 
in Fig. 2. The force constant notation used, and their 
least-squares fitted values for both the general fourth-
neighbor model and axially symmetric fifth-neighbor 
model, are given in Table I I . Some properties of nickel 

TABLE II. Force constant notation and best fit values. 

Neighbor 
location 

First 
(1, 1, 0) 

Second 
(2, 0, 0) 

Third 
(2, 1, 1) 

Four th 
(2, 2, 0) 

Fifth" 
(3, 1, 0) 

Force constants 

Oil 

Ti 
0 
G!2 
0 
0 
« 3 

73 
73 

di 

74 
0 

«5 
55 

0 

7i 
Oil 

0 
0 
02 
0 
73 

fr 
S3 

74 
a* 
0 
5.5 
£5 
0 

0 
0 
01 
0 
0 
02 
73 
S3 
08 

0 
0 
04 
0 
0 
75 

Values (dyn/cm) 

(a) 

General 
forces 

a i = l 7 l 7 8 
0 i = - 2 6 
71 = 19 316 
0:2 = 880 
0 2 = - 5 1 9 

0:3 = 626 
03 = 320 
73 = 453 
S 3 = - 1 7 3 
Q : 4 = 2 7 5 

0 4 = - 1 6 0 
74=424 

(b) 
Axially 

symmetric 
forces 

a i = 17 720 
/5i=—1015 
7i = oi—0i 
02 = 1148 
02 = _ 9 9 8 

03 = 940 
03 = 182 
73 = 2(<* 3-0 3) /3 
S 3 = ( o 3 - 0 3 ) / 3 
0-4=459 
0 4 = - 1 5 3 
74 = 0:4 —04 
0:5= —363 
05 = 100 
7 5 = ( 9 0 5 - a 5 ) / 8 
S6 = 3 ( o 5 - 0 5 ) / 8 

a There is insufficient data for an analysis in terms of a general fifth-
neighbor model. 

utilized in the analysis are listed in Table I I I . Certain 
low-frequency modes and elastic constants are not very 
well fitted by the model, although this lack of fit is 
probably not significant. I t is possible that the elastic 
constant measurements21-28 are sensitive to small 
amounts of impurity or varying heat treatments, and 
therefore may not correspond exactly to those appro­
priate to the present specimen. Furthermore, no special 
efforts were made in the present experiments to make 
high precision measurements of v (q) for low q. 

The fourth neighbor force model described in Table 

TABLE III. Some properties of nickel at 296 °K. 

Mass = 58.71 amu 
Lattice constant = 3.5239 A 
Elastic constantsa (units 1012 dyn/cm2): 

Cn = 2.46, Ci2 = 1.50, C44 = 1.22 

a The precision of the elastic constant values is believed to be better 
than 1%. 

24 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Clarendon Press, Oxford, England, 1954). 

25 G. L. Squires, Arkiv Fysik 25, 21 (1963). 
26 A. T. E. Foreman and W. M. Lomer, Proc. Phys. Soc. 

(London) B70, 1143 (1957). 

27 G. W. Lehman, T. Wolfram, and R. E. De Wames, Phys. 
Rev. 128, 1593 (1962). 

28 G. A. Alers, J. R. Neighbours, and H. Sato, Bull. Am. Phys. 
Soc. 4, 131 (1959). 
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I I has been used as an interpolation formula to compute 
the frequencies of normal modes which have not been 
directly observed in the present experiments. All the 
frequencies thus calculated were found to have plausible 
values. I t seems reasonable, therefore, that the fre­
quency distribution function g(v) for the normal modes 
may be calculated to a good approximation with the 
help of this model. The problem of obtaining g{v) from 
the observed vj(q) or from derived force models has 
been widely studied; the various possible methods have 
been summarized by Maradudin et a/.29 I t has recently 
been emphasized30 that all thermodynamic data may 
be derived from the moments Mn of g(v), defined by 
Eq. (4), and that it is therefore unnecessary to compute 
g(v) itself for the purposes of thermodynamics. The 
most common objection raised against the direct com­
putation of g{v) from a force model by the sampling 
method29 is that the size of the sample required to 
correctly reproduce singular features of g(v), such as 
critical points, is much too large for calculation even 
on high speed electronic computers. This difficulty has 
been largely overcome by means of a new sampling 
method developed by Gilat and Dolling31 in which the 
effective sample size is enormously increased with very 
little increase in computing time. Details of the actual 
calculation of g(v) for nickel using this method are 
given in Appendix A. The resulting distribution func­
tion is shown as the solid line in Fig. 4 ; the principal 
critical points32 are very clearly displayed, and may be 
correlated with the appropriate points on the dispersion 
curves (Fig. 2). The solid line is in fact a histogram plot 
with steps in frequency of 0.02 THz (1 THz = 10f2 cps) 
but the spacing and fluctuation of the individual blocks 
are too small to be plotted separately. Special attention 
has been devoted (see Appendix A) to maintain high 
accuracy in the relatively unpopulated region of low 
frequencies. The dashed curve in Fig. 4 shows the results 
of Tchernoplekov et at}1 obtained from measurements 
of incoherent inelastic neutron scattering from a sample 
of nickel isotopes for which the coherent cross section 
was zero. These results are plotted on an arbitrary 
vertical scale, since it is not possible to normalize them 
correctly with respect to the area under the computed 
curve. The experimental errors are rather large, par­
ticularly for v<l or < 9 THz, and the critical points 
are not clearly shown. There is, however, qualitative 
agreement between the measured and calculated curves. 
The solid circles represent the results of Brugger12 

obtained from observations of the total inelastic scat­
tering from a single crystal of ordinary nickel as a 
function of crystal orientation. The energy resolution 
was insufficient to show the narrow peak near v=S THz. 

29 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Solid 
State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1963), Suppl. 3. 

30 C. Isenberg, Phys. Rev. 132, 2427 (1963). 
31 G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964). 
32 L. Van Hove, Phys. Rev. 89, 1189 (1953). 

FREQUENCY v (THz) 

FIG. 4. Frequency distribution function of nickel determined 
by various methods as described in the text. The experimental 
results (a), (b), and (c) are taken from Refs. 11, 12, and 13, 
respectively. 

At lower frequencies, the resolution was somewhat 
better, and the agreement with the computed curve is 
quite good. The analysis performed by Mozer et a/.,13 

mentioned in the Introduction, is represented by the 
open squares. Both these results and those of Brugger 
have been normalized to the area under the computed 
curve. In view of the crude assumptions employed in 
Ref. 13 to extract g(v) imm the experimental obser­
vations, the agreement between the square points and 
solid curve is remarkably good. Experimental measure­
ments of g(v) with much higher energy resolution are, 
however, needed in order to provide an adequate test 
of the computed distribution function of Fig. 4. 

The departure of the distribution function from that 
expected on the basis of the Debye theory is well 
illustrated by a plot of g(v)/v2, as shown in Fig. 5. The 
intercept at v = 0 corresponds to a Debye ^cutoff" 
frequency vc of 9.374 THz, from which we obtain 6D 

(at 0°K) = W f t * = 449.9°K. (*B is Boltzmann's con­
stant.) An expansion of the low-frequency part of g{v) 
in even powers of v 

g(v) = a,2V2+atv4+asv6-\ , (6) 

showed that a A, a*, etc., were negligible for v up to 
about 0.9 THz. The most usual way to present results 
of g(v) computations for comparison with thermo­
dynamic properties is to evaluate dD as a function of 
temperature. This function is shown in Fig. 6(a). I t 
should be emphasized that this curve has been com­
puted essentially from dispersion curves measured only 
at room temperature. No attempt has been made to 
correct the various derived functions (fe,Mn) for an-
harmonic effects which introduce a slight temperature 
dependence (a few percent for temperatures less than 
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FIG. 5. Calculated g(v)/v2 for nickel at 296°K. 

296°K) of the normal mode frequencies. We therefore 
expect the computed $D to be about 10°K too low at 
very low temperatures. 

Also shown in Fig. 6(a) is a curve representing the 
experimental heat capacity data of Busey and Giauque33 

and of Rayne and Kemp,34 as interpreted by the latter 
authors. As mentioned in the Introduction, the analysis 
of heat capacity (Cv) data for nickel is complicated by 
the existence of a magnetic contribution Cm, in addition 
to the usual conduction electron (Ce) and lattice (Cl) 
terms. Thus an analysis of CV(T) for r<10°K by 
means of the formula 

Cv=Ce+Cl=yT+(3T* (7) 

is quite inadequate in the case of nickel. In the absence 
of a magnetic field, the dominant term35 in Cm is of the 
form A Tm for low T. The existing Cv data for nickel 
are not sufficiently precise to determine the value of A. 
This can be found, however, from saturation magneti­
zation measurements, and the appropriate allowance 
for Cm made in the analysis of Cv. In this way, Rayne 
and Kemp34 have deduced the "experimental" curve 
shown in Fig. 6(a). At 0°K, they obtain 0p = 468°K. 
(A somewhat more accurate estimate of Cm, using a 
better value7,9 for the coefficient A, and making allow­
ance for the nonzero intrinsic field in nickel, shows that 
Cm and therefore also 0z> is rather less than that esti­
mated in Ref. 34.) If no allowance is made for the 
magnetic contribution, Rayne and Kemp obtain 6D 
(0°K) = 441°K. The difficulties of estimating 6D from 
low-temperature calorimetric data are illustrated by 
the wide variety of values in the literature.36 It is clear, 
however, that very accurate calorimetric data for nickel 
over a wide temperature range would provide a most 

33 R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 74, 3157 
(1952). 

34 J. A. Rayne and W. R. G. Kemp, Phil. Mag. 1, 918 (1956). 
35 F. J. Dyson, Phys. Rev. 102, 1217 (1956). 
3<* W. H. Keesom and C. W. Clark, Physica 2, 513 (1935); J. C. 

Walling and P. B. Bunn, Proc. Phys. Soc. (London) 74, 417 
(1959); K. P. Gupta, C. H. Cheng, and P. A. Beck, Phys. Chem. 
Solids 25, 73 (1964). The OD values given in these references are 
413, 348, and 330°K, respectively. 

valuable check on theoretical calculations of the various 
contributions to the total heat capacity. 

Estimates of 6D (0°K) may also be made from the 
elastic constants measured at very low temperatures. 
Alers et a/.28 have obtained 0 D = 4 7 6 ° K for nickel under 
conditions of saturation induction. The value appro­
priate to unmagnetized nickel is probably somewhat 
lower than this, if the room temperature results of 
de Klerk21 are taken as a guide. 

Taking the above considerations into account, the 
agreement between the two curves in Fig. 6(a) may be 
regarded as quite satisfactory; it provides additional 
support for the validity of the Born-von Karman force 
model constructed from the observed v3-(q) results. 

An instructive way18 to express the frequency-
distribution result, which is more generally useful for 
the purpose of comparison with calorimetric data, is 
by means of its moments Mn, defined by Eq. (4). 
These, in turn, can be conveniently expressed in terms 
of "Debye frequencies," pn, defined for n> —3 by 

vn=\:(n+3)Mn/3jin for » ^ 0 . 

It can also be shown that 

M=(W^)fe(0°K) 

and 

(8) 

^o=exp - + / gMlnvdv/ g{v)dv\ 

The variation of vn with n, computed from the distri­
bution function, which in turn was derived from the 
measured dispersion relation, is shown in Fig. 6(b). 
(In the simple Debye theory, vn is of course a constant, 
the "cutoff" frequency.) The existing heat capacity 
data for nickel have not been analyzed so as to extract 
vn values for comparison with this calculated curve. 

CALCULATED FROM l/j (q) AT 296°K 
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FIG. 6. (a) Comparison of calculated and experimental values 
of the Debye temperature, (b) Calculated "Debye frequencies," vn. 
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DISCUSSION APPENDIX A 

The main features of the dispersion relation for 
normal modes propagating in the principal symmetry 
directions in nickel at 296°K have been determined. 
It is of interest to compare these results with the 
dispersion relation found37-38 for copper. Cribier et al.z7 

have measured Vj(q) for the [00f],* [Off], and [fff] 
directions. Preliminary results of Sinha and Squires38 

for the first two directions are in agreement (within the 
experimental errors of about 5%) with the earlier 
results. The available data are barely sufficient to 
perform a detailed analysis as described above for 
nickel. Sinha and Squires have attempted, with fair 
success, to fit their results by means of a modified form 
of the model proposed by Toya.15 Both the experi­
mental and theoretical dispersion curves for copper 
show a striking similarity to those obtained for nickel. 
The phonon frequencies in copper, apart from certain 
L modes very close to the [Off] zone boundary, are on 
the average a factor 1.24 less than the analogous fre­
quencies in nickel. The individual ratios are the same 
within experimental error, though there is a tendency 
for slightly higher ratios to be associated with the lower 
frequencies and vice versa. The exceptional Z[0ff] 
modes are in any case not well fitted by the model of 
Sinha and Squires (which fits the simple ratio rule 
quite closely). The elastic constants Cn and Cu and 
the values of 6D (T=0°K) are also consistent with the 
rule, but the ratio appropriate to Ci2 is about 10% too 
low. An analysis of heat capacity data to obtain the 
"Debye frequencies" vn has not yet been carried out 
for nickel. Values of vn for copper have, however, been 
deduced39 for n= - 3 , - 2 , - 1 , +2 , + 4 and +6 . The 
ratios of the vn calculated for nickel to the observed 
values for copper are 1.30, 1.25, 1.23, 1.21, 1.21, and 
1.22, respectively. Perhaps this correlation between 
copper and nickel, crude and unsophisticated though 
it may be, is an indication that the normal modes of 
vibration in nickel may be adequately treated within 
the theoretical framework developed by Toya15 and 
Cochran.17 Finally, we emphasize the need for more 
extensive and precise calorimetric data for nickel and 
neutron scattering data for copper, in order to facilitate 
the achievement of detailed and comprehensive ex­
planations of the thermal, magnetic and electronic 
properties of these two metals. 

37 D. Cribier, B. Jacrot and D. Saint-James, Ref. 3, p. 549. 
38 S. Sinha and G. L. Squires, Phys. Chem. Solids (to be 

published). 
39 L. Salter and J. A. Morrison (private communication). 

The irreducible 1/48 of the Brillouin zone (BZ) is 
taken to be denned by the five planes aqx/2ir= 1, qz=0, 
Qy=Qz, qx=qy, and (qx+ qy+qz)a/'2ir= 1.5. This poly­
hedron is subdivided into three parts labeled A, B, C 
in order of increasing qx values, by the planes aqx/2ir 
= 0.125 and aqx/2w= 0.0625. The normal mode fre­
quencies are computed for wave vectors lying on a 
simple cubic mesh (CM) of spacing <z#/27r= 1/144. 
CM is chosen so that the origin T (and, in fact, all the 
corner points of BZ) of reciprocal space lies at the body 
center of a basic cube of the mesh. This choice is sub­
stantially more efficient than the other alternative, in 
which T lies at a corner point of the mesh. A straight­
forward calculation of g(v) on this basis would involve 
254 040 matrix diagonalizations to obtain a total of 
35 831 808 phonon frequencies in the entire zone. This 
difficulty is avoided by diagonalizing the matrix D at 
points throughout the region C (high q) on a "crude" 
mesh of spacing aq/2ir= 1/16. At each q value (labeled 
X, say) the frequency gradients dvj/dqi are computed 
by simple perturbation theory; the phonon frequencies 
corresponding to the 729 points of the basic mesh CM, 
which lie in the vicinity of each X, are then computed 
by straightforward linear extrapolation. This method 
may not be sufficiently accurate31 over the whole of 
BZ, particularly at small wave vectors. Thus we di-
agonalize the matrix D for wave vectors on an "inter­
mediate" mesh of spacing aq/2ir=\/A& over the region 
B, and utilize perturbation theory at each point to 
compute only nine basic mesh points CM. Finally, the 
region C of the zone (aqx/2ir< 0.0625) is treated by 
diagonalization at all CM points, without the use of 
perturbation theory. The distribution function g(v) 
thus calculated (see Fig. 4) is believed to be an ex­
tremely accurate representation of the general fourth-
nearest-neighbor force model (Table II). It is adequate 
for the computation of all thermodynamic quantities 
except those which are sensitive to the moments Mn 

of g{v) for n^ — 2. In order to increase the accuracy of 
g(v) for very low frequencies, a second calculation was 
made for the regions A and B (i.e., for aqx/2w<0.125) 
of BZ. The spacing of the basic mesh CM was aq/2ir 
= 1/720, five times smaller than in the first calculation. 
A three-stage system of computation was again em­
ployed, and the results of the two calculations added 
together after proper normalization. The results shown 
in Figs. 4, 5, and 6 are based on this "combined" g(v). 
All these computations were performed on the Control 
Data G-20 computer at Chalk River; the total com­
puting time involved in producing the data for Figs. 4, 
5, and 6 was about 25 min. 


